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FOREWORD

This report describes work performed in the Flight Dynamics Laboratory of the U.S.
Air Force Wright Aeronautical Laboratories under the Defense Research Sciences Program
administered by the Air Force Office of Scientific Research under Project 2304, Mathemati-
cal and Information Sciences, and Task N1, Computational Aspects of Fluid and Structural

Mechanics. It constitutes the final report for the Work Unit entitled Numerical Analysis
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I. INTRODUCTION

A previous report in this series (4] described the simultaneous or subspace iteration
method for the partial solution of the generalized symmetric eigenvalue problem and pro-
vided a USA Standard Fortran X3.9 - 1966 subroutine subprogram SIMITZ iinplementing
the algorithm. A synopsis of that report was later published in a technical journal [5]
and served as a model for a Fortran X3.9 - 1978 (Fortran 77) version issued in 1983 as a
component of a proprietary scientific software library distributed worldwide by Numerical
Algorithms Group (NAG). Limited, of Oxford. United Kingdom. This code is referred to

in the NAG Fortran Library as FO2FJF [6].

The SIMITZ code as originally published\ proved in early experiments to be deviant
in the Fortran 77 standard. Accordingly, the 1966 code has been rewritten in Fortran 77
utilizing all of the applicable features of this standard. The revised code is included with

this report.

Recent experiments with the Fortran 77 version of SIMITZ have been carried out using
the CFT77 compiler on a CRAY X-MP supercomputer. This compiler offers extensions to
Fortran 77 some of which are part of the proposed Fortran 8x standard [3]. Accordingly, the
Fortran 77 version has been rewritten to incorporate several Fortran 8x standard features,
and that code is also included with this report. This new Fortran 8x version of SIMITZ
exposes the algorithm for the first time to the full potential of multiple vector processors
incorporating multiple functional units featured with the supercomputer offerings of Cray

Research, Inc.

Section II of this report furnishes a brief mathematical description of subspace iteration.
It also includes relevant implementation details and a description of test programs to enable
rapid checks for correct installation. The author’s recommendations comprise Section III.
Finally, appendices to this report provide listings of the machine-readable documentation

1
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furnished with eacl: version of SIMITZ. A 5;" diskette which includes an ASCII file of

each version is provided to qualified requestors of the present report.




II. DESCRIPTION

The present programs are implementations of the subspace iteration algorithm [7] for
calculating the eigenvalues largest in magnitude and corresponding eigenvectors of a real
matrix symmetric relative to a prescribed inner product. Let i{p(n.u.z) denote an inner
product in the space of real column n-tuples and let the real n-square matrix C satisfy
ipin.Cu.z) =ipin.w.Cz). Then C is symmetric relative to ip, and if the n-square positive
definite matrix B satisfies ip(n.w. z) = w? Bz then C is B-symmetric. The equation BC' =
CT B characterizes the B-symmetry of C. Given an optional set of p initial approximate
eigenvectors of a real n-square B-symmetric matrix (' corresponding to p eigenvalues of
C largest in magnitude. the program calculates em eigenvalues and em corresponding
eigenvectors 0 < em < p < n. to a precision dependent on the structure of C and on a
prescribed tolerince eps. The matrix B is presented to the program as an independently
prepared real function subprogram which calculates ip(n, w,2) = wl Bz given column n-
vectors w and z. The matrix C is presented as an independently prepared subroutine
subprogram op(n.z.w) which when given an n-vector z computes its image w = Cz. The
program is an outgrowth of a iiteral Fortran translation of the ALGOL procedure ritzit (8]
to which it is substantially equivalent when ¢ = C7T and ip(n.w.z) = wT 2. the standard
inner product. But depending on the choice of B and C'. the present program enables the

direct treatment of a wide variety of symmetric eigenproblems.

Let A = AT and B = BT denote n-square real matrices and let o be real. If B is
positive definte then the matrix C = B™1(4 — 0B) is B-symmetric, and the program
computes eigenvalues farthest from o of the eigenproblem Au = ABu and corresponding
eigenvectors. Implementation of op(n, z, w) here consists in providing for the appropriate
solution for u' of the linear system Bw = (4 — 0 B)z. Alternatively, selection of op to solve
the system (A —oB)u = Bz for w enables the calculation by simultaneous inverse iteration

2
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or the elgenvahues nearst 1o ¢ and their eigenveciors. Iinplications for large sparse systers

for which the Cholesky factorization of B is impractical are clear.

The user may wish to supplement the following ontline of the operation of the program
by consulting the description of the ALGOL procedure ritzit in (8] as well as a review of

the mathematical foundations of simultaneous iteration in 7 .

Let the eigenvalues d).....d,.d ...dy of C' be arranged in order of descending ab-

p=1+-
solute value and let E, denote the direct sum of the distinct eigenspaces corresponding

to d;.....d,. Let X denote an n-by-p matrix having a p-dimensional column space not

P
orthogonal relative to ip to any eigenvector in E,. Simultaneous iteration is based on the
observation that if |dy| > 'd,.;|. the columns of the matrix Xy.,, = C™ X} tend to a basis
of E, as ks = k + m increases. But in practice all of the columns of X tend toward the
eigenspace E, causing loss of information concerning the residual eigenvectors. To counter

this tendency. set

Xe-m =C™X R, (1)

where the p-square upper triangular matrix Ry .,, is constructed together with X, _.,, by
the Gram-Schmidt process to render the columns of Xy _,, orthonormal relative to 1p. Now
the * column vector of X} converges to the 7" eigenvector of C at a rate proportional
to maxy.,-p(|d,/d,-11.1d,./d,]|). Clearly this convergence will be delayed in the presence
of eigenvalue clustering. But if {d,! — |dp-1| is not too small. the column space of X will

t

contain a good approximation to the 7** eigenvector even when k is small.

In order to recover this approximation. a modified Ravleigh-Ritz process is employed.
Let Q denote an orthogonal matrix which diagonalizes the p-square symmetric matrix

RkRkT. Then the " column vector of

Xeo = CXeR Q0 (2)

1
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eigenvector of (7 at a rate proportional to .d, . /d, while the entries of
the diagonal martrix computer with @4 and properly ordered offer close approximations to
di.. d; The true <igned eigenvalues need only pe computed at termination by diago.al-
izing the leading (p - 11-square principal submatrix of \A’ B X,. the eigenproblem for ¢
; relative to op.

projected on E,

The progran: determines a strategy for emploving the devices (1) and (2) based on the
distribution of the leading p eigenvalues of (" upon which the convergence rate ultimateiy
depends. The selection of values min (1) is particularly mmportant in this regard in that
C™X, is replaced by the m!™ Chebychev polynomial on the inter.l '—e. ¢! evaluated by a
special 3-term recurrence relation and permitting accelerated convergence when values of
m are continually large: ¢ is the current value of d,. As a result the convergence quotient
lies between |d,/d,,,| and exp(—arccosh |dey/dp)). 1t is nearer to the first value if |d; /dep;

is large and nearer to the second if the latter quotient is close to one.

As the iteration proceeds through a maximum of [km! iteration steps -- km is a pro-
gram parameter — acceptance tests for the eigenvalues and eigenvectors are conducted
following each of the Rayleigh-Ritz steps (2). As soon as the relative increase of [dj .|
is smaller than eps/10. then dj., is accepted and /. the number of previously accepted
eigenvalues. is increased by one. Eigenvectors are accepted in groups of one or more corre-
sponding to clusters of accepted eigenvalues nearly equal in magnitude. If ¢ eigenvectors
have already been accepted. let dg_;....d,; denote such a cluster. For all j,g+1<j < ¢,
denote by y, the projection relative to ip of the image Cz, of the Jt* column r; of X} on
the linear closure of r;.....z4. Set f, = max, ||Czr,—y,||/||Cz,|| for i = g+1, ..., { where the
indicated norm is the Euclidean norm or 2-norm relative to ip. If |dy| f¢/(|d¢| — €) is smaller
than eps then all the r,.j = g+1.....£, are accepted as eigenvectors and g is increased to £.

The error quantities f, are systematically discounted in accordance with the convergence




Dropertics OF The aloorihin oo perniit convergence i the presence of excessive round-off
OTTOT OF 1. case the paratieter ¢ ps s prescribed unrealistically small. Having determine g
elpenvectors e feration continues with p - ¢ remaining columns of Xy until either em
clgenvectors hove been caciiated or k7o has been exceeded. The program may reduce

et detects ethie r no progress in convergence of eigenvectors corresponding to smaller

elgenvaines or sack of stability i the behavier of larger eigenvalues. ,

The Fortran progranis presented here which irnplement the algorithm described above
differ prunarily i their treatment of loc~1 storage required by SINIITZ and in the parame-
ters assoctated with the procedure opln. z.w). The Fortran 77 version requires the calling
prograin to reserve max(p?.2n} -~ 3p consecutive locations of temporary storage for use by
SIMITZ. The CFT77 code tends to trade memory for speed. There temporary storage 1s
accommodated in Fortran ®x “automatic arrays” which total 2np + p* + 4p locations and
do not involve the calling program. Both versions are adapted to operate in the software
environment furnished by the SLATEC Marhematical Subprogram Library [9]. Version

3.1. Calling sequences are identical and agree with that of the original Fortran 66 code.

The role of the procedure op(n.z.u) in the CFT77 code for the CRAY differs slightly
from that in the Fortran 66 and Fortran 77 versions. In the former code z and w identify
matrices of column n-vectors. and op must compute the image w of z under multiplication
by the matrix (*. Hence. op requires two additional parameters which identify (1) the
extent of the array containing the matrix 2z and (2) the number of column vectors of the
matrices identified by = and . Details may be found in Appendix B. A view of what can
be accomplished when op implements matrix multiplication by a full matrix " may be
inferred from a paper of Bailey 1. More complicated computations involving the matrices
(" and = require a more elaborate and careful design of the procedure op. A survey by

Duff ‘2. convevs the flavor of ~everal of these design issues when the target computer 15 a
= A 4 £ I
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minltiple processor CRAY.

The Fortran 77 version of SIMITZ nrovided with the present report was installed and
revised on a CDC CYBER 180-855 processor using the NOS 2.5 operating systemn and the
FTN5 Fortran compiler. Subsequently. installation was carried out on a CRAY X-MP/12
processor with the COX 1.15 operating systemy and CFT 1.15 Fortran compiler. Revisions
adhering 1o the Fortran %x standard were completed with the CRAY CFT77 compiler.
Version 1.3.

The revision process was accomplished in part with the aid of an executable Fortran
program TESTD Given as input the integer values n.p. and km together with a real value

eps. TESTD generates a pair of randcm real n-square diagonal matrices A and B. It then

exercises SIMITZ on the eigenvalue problem AX — BXD = O where D = diag(d,....,d,).
For each value em{in) = em.em = 1,...,p — 1. TESTD calls SIMITZ and records the
number em(r) of eigenpairs successfully calculated within the tolerance eps, the maximum
fmazr(r) of the error quantities f,,1 = 1,...,em(r). and the total number ks(r) of iterations
expended by SIMITZ in each call. Each exercise is performed twice. once for random
(r) initial eigenvectors X and once when initial eigenvectors are Lanczos (¢) vectors [7].
TESTD finally lists the true eigenvalues. which are the diagonal entries ¢, of B !4, and
their computed counterparts d,. the corresponding error quantities f, and the norms e,
in the standard Euclidean metric of the residuals (4 — d,B)X.7 = 1.....em(£). Figure 1

shows a typical output listing from the executable program TESTD.
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P

EM(L)

D DO IDU s
b DD A~ AT e~ N

TOTAL KS(L) =

C(1)

.5457629301304E+00
.4604362516858E+00
.1321574055138E+00
.1042303464189E+00
.0432976702273E+00
.0257765390463E+00

= 10

FMAX (L)

.24E-08
.05E-07
.T5E-07
.48E-07
.49E-07
. 19E-07
.61E-07
.36E-07
.64E-07

Output List (CFT77)

KM = 210

KS(L) KS(R)

17 30

20 30

43 50

56 56

75 75

94 75

113 138

113 138

138 138

669 730

D(I)
.5457628301305E+00
.4604362516858E+00
.1321574055138E+00
.1042303464190E+00
.0432976702274E+00
.0257765390463E+00

= TOTAL KS(R)

D OO~

EPS =

FMAX (R)

.13E-09
.87E-09
.55E-08
.45E-08
.36E-08
. 14E-08
.51E-08
.7T1E-08
. 10E-08

®IU e~ Db

F(I)

. 29E-08
.64E-07
.27E-08
.61E-10
.3TE-08
. 10E-08

1.25E-06

EM(R)

OO OGN~

E(I)

9.84E-08
.28E-07
.82E-08
.55E-10
. 13E-08
.60E-08

W= O N




HIL RECOMMENDATION

The computist having an application requiring -partial solution of the large sparse
syumetric eigentalue problen now has several options. If he hias access to the NAG Tortran
Library. Mark 11, or 1o a later mnark. he would do well to consider use of FO2FJF from that
library. The NAG version of SIMITZ has benefited by extensive independent testing by an
internationaliv known technical staft as well as from field testing by a worldwide clientele.
Moreover. a clever nse of the singular value decomposition avoids the computation of the
squares of the desired eigenvalues thus enhancing robustness ot the code when the range
of Fortran real values may be limited as on some microcomputers. This writer was unable
to match the accuracy of the NAG auxiliary routines for singular value decomposition
of an upper triangular matrix using the LINPACK code SSVDC found in the SLATEC
collection. FO2FJF may run a bit slower on some processors than its Fortran 77 SIMITZ
counterpart owing to extensive subprog-am calls to NAG auxiliary routines. This speed

differentia! will decrease as the size n of the matrix increases.

If one desires to use codes which are all in the public domain. he may employ either
the Fortran 77 SIMITZ or the Fortran 8x version for CRAY processors. Accuracy and
rohustness are almost identical owing to adherence faithfully to the ANSI standard and to

the use of the SLATEC auxiliary prograns.

Whichever version one uses. he should need the following advice: Gain experience with
SIMITZ on problems of moderate size before investing extensive computer resources on

large problems for which the codes are ultimately intended.
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APPENDIX A

Appendix A provides a listing in SLATEC format of the Fortran 77 documentation of

SIMITZ.

11




Cx»#BEGIN PROLOGUE SIMITZ

Cx**»%DATE WRITTEN 750815 (YYMMDD)

Cxx*REVISION DATE 881022 (YYMMDD)

Cxx*CATAGORY NO. F2C2, F2C9, F2D

Cxx*KEYWORDS EIGENVALUES,EIGENVECTORS,SUBSPACE ITERATION

Cx*#AUTHOR NIKOLAI, PAUL J.

C U.S. AIR FORCE WRIGHT AERONAUTICAL LABORATORIES

C WRIGHT-PATTERSON AFB, OH 45433

C#»xPURPOSE GIVEN AS OPTIONAL INPUT A SET OF P INITIAL APPROXIMATE
EIGENVECTORS OF A REAL, N-SQUARE SYMMETRIC MATRIX A CORRES-
PONDING TO P EIGENVALUES LARGEST IN MAGNITUDE, SIMITZ COM-
PUTES EM EIGENVALUES LARGEST IN MAGNITUDE AND EM CORRES-
PONDING EIGENVECTORS TO A PRECISION DEPENDING ON THE STRUC-
TURE OF A AND ON A PRESCRIBED TOLERANCE EPS. THIS VERSION
OF SIMITZ IS AN ANSI X3.9-1978 FORTRAN VERSION OF (1).

*x%*DESCRIPTION

CONTROL

DIMENSION X(LDX,P), D(P), WK(X)
INTEGER P, EM

REAL IP

EXTERNAL IP, INF, OP

CALL SIMITZ(N, P, KM, EPS, IP, OP, INF, EM, X, LDX, D, W)

WHERE

N IS AN INTEGER INPUT VARIABLE, THE ORDER OF THE MATRIX A.

P IS AN INTEGER INPUT VARIABLE, THE NUMBER OF SIMULTANEOUS
ITERATION VECTORS.

KM AS AN INTEGER INPUT VARIABLE IS IN MAGNITUDE THE MAXIMUM
NUMBER OF ITERATION STEPS TO BE EXECUTED. IF KM IDENTIFIES
A NEGATIVE VALUE THEN P INITIAL APPROXIMATE EIGENVECTORS
ARE ASSUMED TO BE PRESENT IN THE ARRAY X. OTHERWISE SIMITZ
SUPPLIES RANDOM INITIAL EIGENVECTORS.

KM AS AN INTEGER OUTPUT VARIABLE IDENTIFIES THE NUMBER KS OF
ITERATION STEPS FINALLY USED IN THE CALCULATION OF EM
EIGENVECTORS.

EPS IS A REAL INPUT VARIABLE, THE TOLERANCE FOR ACCEPTING
EIGENVECTORS. AS SOON AS SUCCESSIVE ITERATES OF THE RITZ
VALUES ABS(D(H+1)) DIFFER BY LESS THAN ABS(D(H+1))*EPS/10.0
THEN D(H+1) IS ACCEPTED AS AN EIGENVALUE AND H, THE NUMBER
OF PREVIOUSLY ACCEPTED EIGENVALUES, IS INCREASED BY 1. AS
SOON AS THE ERROR QUANTITIES F(I), NORMS OF THE RESIDUALS.
SATISFY D(I)xF(I)/(D(I) - D(P)) .LT. EPS, THEN G, THE NUM-
BER OF ALREADY ACCEPTED RITZ VECTORS, IS INCREASED TO
G+L,I=G+1, ..., L. THE F(I) ARE DISCOUNTED WITH
SUCCESSIVE ITERATIONS TO FORCE CONVERGENCE IN CASE OF UN-
FORTUNATE CHOICE OF PARAMETERS. IF M SIGNIFICANT DIGITS
OF ACCURACY ARE REQUIRED OF THE EIGENVALUES, THEN SET
EPS EQUAL TO 10.0%x(-M) AS A GENERAL RULE.

IP IS AN EXTERNAL INPUT VARIABLE, THE NAME OF A FORTRAN COM-

oNoRoNoNsNoNoNeRoREoRsNoRoNoNoRoNsNoNOoNoNoNONe RO NONONONI NI NCNO RO NI RPN RO NONINONONONO NS N NP
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PATIBLE KEAL FUNCTICON SUBFROGRAM OF THE FCRM IP(N, 2, W
WHICH MUST RETURN THE INNER PRODUCT OF THE VECTORS IDENTI-
F1ED BY THE N-ARRAYS Z AND W. WHEN A IS SYMMETRIC, IP
SHOULL RETHURN THE STANDARD INNER PRODUCT (Z-TRANSPOSED)W.
WHEN A [ SYMMETRIC RELATIVE TO A GENERAL INNER PRODUCT
(C-TRANSPOSEDLBW. B rOITIVE DEFINITE., THEN 1P MUST RETURN
THIS INNFE PRODHOT.

OF I8 AN EXTeRNAL INPUT VARIABLE, THE NAME OF A FOKTRAN COM-
PATIELE SUBROUTINE SUBPROGRAM OF THE FORM OP(N, Z, W)
WHICH MUST CALCULATE THE IMAGE W OF THE VECTOR IDENTIFIED
BY THE N- ARRAY Z UNDER THE N-SQUARE MATRIX A WITHOUT OVER-
WRITING 2.

INF I$ AN EXTERNAL, INPUT VARIABLE, THE NAME OF A FORTRAN COM-
PATIBLE SUBROUTINE SUBPROGRAM WHICH MAY BE USED FOR
OBTATINING INFORMATICN OR TQO EXERT CONTROL DURING EXECUTION
OF SIMITZ. INF HAS THE FORM INF(KS, G, H, F) WHERE

KS IS AN INTEGER OUTPUT VARIABLE, THE NUMBER OF THE NEXT
ITERATION STEP.

G TS5 AN INTEGER OUTPUT VARIABLE, THE NUMBER OF ALREADY
ACCEFTED EIGENVECTORS.

H IS AN INTEGER OUTPUT VARIABLE, THE NUMBER OF ALREADY
ACCEPTED EIGENVALUES.

F IS A REAL OUTPUT VARIABLE P-ARRAY, ERROR QUANTITIES
MEASURING RESPECTIVELY THE STATE OF CONVERGENCE OF
THE P SIMULTANEOUS ITERATION VECTORS. EACH ELEMENT OF
THE ARRAY F IS INITIALLY SET BY SIMITZ TO THE VALUE 4.0.

EM AS AN INTEGER INPUT VARIABLE IS THE NUMBER OF EIGENVALUES
TO BE COMPUTED, 0 .LT. EM .LT. P .LE. N .LE. LDX.

EM AS AN INTEGER OUTPUT VARIABLE IS THE NUMBER OF EIGENVECTORS
COMPUTED THROUGH KM ITERATION STEPS.

X AS A REAL N-BY-P INPUT ARRAY IS A SET OF P OPTIONAL INITIAL
APPROXIMATE EIGENVECTORS X(I,(1}, ..., X(1,P), I =1, ...,
N, INTERPRETED BY SIMITZ IF KM IS NEGATIVE.

X AS A REAL N-BY-P OUTPUT ARRAY IS A SET OF EM EIGENVECTORS
X(p, ), ..., X{I, e, I =1, ..., N, COMPUTED THROUGH
ABS(KM) ITERATION STEPS WITH THE REMAINDER OF X CONSISTING
OF P - EM APPROXIMATE EIGENVECTORS. THE P-SQUARE MATRIX
WHOSE (J, L) ENTRY IS IP(N, X(1,J), X(1,L)) IS THE IDEN-
TITY MATRIX; THAT 1S, THE EIGENVECTORS OF A ARE ORTHO-
NORMAL RELATIVE TO THE INNER PRODUCT IP.

LDX IS AN INTEGER INPUT VARIABLE WHICH IDENTIFIES THE LEADING
DIMENSION IN THE CALLING PROGRAM OF THE ARRAY X.

D IS A REAL OUTPUT P-ARRAY OF WHICH D(1), ..., D(EM ARE THE
EIGENVALUES OF A LARGEST IN MAGNITUDE IN DECREASING ORDER
CORRESPONDING TO THE COMPUTED EIGENVECTORS X(I,1), ...,
X(I,EM, I =1, ..., N. D(EM+1), ..., D(P-1) CONTAIN
APPROXIMATIONS TO PROGRESSIVELY SMALLER SUCH EIGENVALUES.
D(P) CONTAINS THE MOST RECENTLY COMPUTED VALUE OF E, WHERE
THE INTERVAL (-E, E) IS THE INTEFRVAL OVER WHICH THE
CHEBYSHEV ACCELERATION WAS PERFORMED.

WK  THE INITIAL LOCATION OF AT LEAST MAX(Pxx2, 2%N) + 3#P = K
CONSECUTIVE STORAGE LOCATIONS WHICH MAY NOT BE OVER-
WRITTEN WHILE SIMITZ IS IN EXECUTION.
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OTHER PROGRAMMING INFORMATION

THIS VERSION OF SIMITZ IS DESIGNED TO OPERATE IN THE SOFTWARE
ENVIRONMENT FURNISHED BY THE SLATEC COLLECTION, VERSION 3.1.

THE PERFORMANC. OF SIMITZ IS STRONGLY DEPENDENT UPON THE CHOICE
OF INPUT PARAMTTERS AND UPON THE CAREFUL PREPARATION OF THE
SUBFPROGRAMS [ AND OP. THE USER SHOULD CONSIDER USING HIS OWN
ACTIVE SUBROUVINE INF TO MONITOR PROGRESS OF SIMITZ RELATIVE TO
HIS CHOICE OF INPUT PARAMETERS IF NO INFORMATION IS OTHERWISE
AVAILABLE CONCERNING THE LOCATIONS OF THE RELEVANT EIGENVALUES.
RECALL THAT SIMITZ MAY BE REENTERED WITH KM .LT. O WITHOUT LOSS
OF INFORMATION TO PERMIT CONSERVATIVE INITIAL CHOICES OF

ABS (KM) ., EPS AND P.

OTHER PRC3RAMS REQUIRED

FUNCT1ON RAND
RETURNS UNIFORMLY DISTRIBUTED RANDOM NUMBERS ON THE OPEN
INTERVAL (O, D).
SUBROUTINE TRED2
IS THE EISPACK (4) PROGHAM WHICH COMPUTES A HOUSEHOLDER
TRIDIAGONAL FORM OF A REAL SYMMETRIC MATRIX.
SUBROUTINE IMIQLZ2
IS THE EISPACK PROGRAM WHICH COMPUTES THE EIGENVALUES AND
ORTHONORMAL EIGENVECTORS OF A SYMMETRIC TRIDIAGONAL MATRIX.
SUBROUTINE XERRWV
PROCESSES AN ERROR (DIAGNOSTIC) MESSAGE.
FUNCTION RIMACH
RETURNS SINGLE PRECISION MACHINE DEPENDENT CONSTANTS.
FUNCTION IP
IS DESCRIBED ABOVE.
SUBROUTINE OP
IS DESCRIBED ABOVE.
SUBROUTINE INF
IS DESCRIBED ABOVE.

METHOD

SIMITZ REPRESENTS RESULTS OF EXTENSIVE MODIFICATIONS AND TESTS
OF SUBROUTINE SIMITZ (1), A FORTRAN 66 TRANSLATION OF THE
ALGOL 60 PROCEDURE RITZIT (3). THE BASIC RUTISHAUSER-REINSCH
ALGORITHM IS PRESERVED. ,
»**REFERENCES (1) PAUL J. NIKOLAI, ALGORITHM 538 - EIGENVECTORS AND
EIGENVALUES OF REAL GENERALIZED SYMMETRIC MATRICES BY
SIMULTANEOUS ITERATION, ACM TRANS. MATH. SOFTWARE S
(1979) , 118-125.
(2) BERESFORD N. PARLETT, THE SYMMETRIC EIGENVALUE
PROBLEM, PRENTICE-HALL, ENGLEWOOD CLIFFS, 1930.
(3) HEINZ RUTISHAUSER, SIMULTANEOUS ITERATION METHOD FOR
SYMMETKIC MATRICES, NUMER. MATH. 16(1970), 205-223.
(4) B.T. SMITH ET AL, MATRIX EIGENSYSTEM ROUTINES -
EISPACK GUIDE, 2-ND ED.,LECTURE NOTES IN COMPUTER
SCIENCE 6, SPRINGER-VERLAG, NEW YORK. 1976.
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Cx»*ROUTINES CALLED
C#»»END PROLOGUE

IMTQL2 , RIMACH, RAND , TRED2 , XERRWV
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APPENDIX B

Appendix B provides a listing in SLATEC format of the Fortran 8x documentation of

SIMITZ.




Cx*»#BEGIN PRCLOGUE SIMITZ

Cx»*DATE WRITTEN 750815 (YYMMDD)

Cx#»REVISION DATE 881115 {(YYMVMDD)

C*%»CATAGORY NC. F2C2, F209, F2D

CrxxXEYWORDS EIGENVALUES ,EIGENVECTORS ,SUBSPACE ITERATION

Cx=*# AUTHOR NIXOLAY, PAUL J.

o 7 S. AIR FORCE WRIGHT AERONAUTICAL LABORATORIES

C WRIGHT-PATTERSON AFB, OH 45433

Cx*»PURPOSE GIVEN AS OPTICNAL INFUT A SET OF P INITIAL APPROXIMATE
EIGENVECTGRS OF A REAL N-SQUARE SYMMETRIC MATRIX A CORRES-~
PONDING TO P EIGENVALUES LARGEST IN MAGNITUDE, SIMITZ COM-
PUTES EM EIGENVALUES LARGEST IN MAGNITUDE AND EM CORRES-
PONDING EIGENVECTCRS TO A PRECISION DEPENDING ON THE STRUC-
TURE OF A AND ON A PRESCRIBED TOLERANCE EPS. THIS VERSION
OF SIMITZ IS A CRAY CFT77 FORTRAN VERSION OF (1).

#»x#DESCRIPTICN

REAL X(LDX,P), D(P)
INTEGER P, EM

REAL IP

EXTERNAL IP, INF, OP

CALL SIMITZ(N, P, KM, EPS, IP, OP, INF, EM, X, LDX, D, WK)

WHERE
N IS AN INTEGER INPUT VARIABLE, THE ORDER OF THE MATRIX A.
p IS AN INTEGER INPUT VARIABLE, THE NUMBER OF SIMULTANEOUS

ITERATION VECTORS.

AS AN INTEGER INPUT VARIABLE IS IN MAGNITUDE THE MAXIMUM

NUMBER OF ITERATION STEPS TO BE EXECUTED. IF KM IDENTIFIES

A NEGATIVE VALUE THEN P INITIAL APPROXIMATE EIGENVECTORS

ARE ASSUMED TO BE PRESENT IN THE ARRAY X. OTHERWISE SIMITZ

SUPPLIES RANDOM INITIAL EIGENVECTORS.

KM AS AN INTEGER OUTPUT VARIABLE IDENTIFIES THE NUMBER KS OF
ITERATION STEPS FINALLY USED IN THE CALCULATION OF EM
EIGENVECTORS.

EPS IS A REAL INPUT VARIABLE, THE TOLERANCE FOR ACCEPTING
EIGENVECTORS. AS SOON AS SUCCESSIVE ITERATES OF THE RITZ
VALUES ABS{D(H+1)) DIFFER BY LESS THAN ABS(D(H+1l))*EPS/10.0
THEN D(H+1) IS ACCEPTED AS AN EIGENVALUE AND H, THE NUMBER
OF PREVIOUSLY ACCEPTED EIGENVALUES, IS INCREASED BY 1. AS
SOON AS THE ERROR QUANTITIES F(I), NORMS OF THE RESIDUALS,
SATISFY D(I)»F(I)/(D(I) - D(P)) .LT. EPS, THEN G, THE NUM-
BER OF ALREADY ACCEPTED RITZ VECTORS, IS INCREASED TO
G+L,I1=G+1, ..., L THE F(I) ARE DISCOUNTED WITH
SUCCESSIVE ITERATIONS TO FORCE CONVERGENCE IN CASE OF UN-
FORTUNATE CHOICE OF PARAMETERS. IF M SIGNIFICANT DIGITS
OF ACCURACY ARE REQUIRED OF THE EIGENVALUES, THEN SET
EPS EQUAL TO 10.0x*(-M) AS A GENERAL RULE.

IP IS AN EXTERNAL INPUT VARIABLE, THE NAME OF A FORTRAN COM-
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AT ML RlAL SONCTION SUBPROGRAM OF THE FORM IP(N, Z, W)
WHITH MU T RoTiLRN THE INNER PRODUCT OF THE VECTORS IDENTI-
FIED BY THR N ARRACS Z AND W, WHEN A 1S SYMMETRIC, IP
SHOULD BRI THE STANDARD INNER PRODUCT (Z-TRANSPOSED)W.
WHEN A o OYAMMITTLIT RELATIVE TO A GENERAL INNER PRODUCT
P -TRANSTCHET W, B POSITIVE DEFINITE, THEN IP MUST RETURN
THIS INNRE DhRODUT

OGP IF AN EXTEEN INPITY VARIABLE, THE NAME OF A FORTRAN COM-

- F

PATIBLE = UTINE SUBPROGRAM OF THE FORM OP (N, 2, LDZ, W, M
WHICH MuUsT TAlCULATE THE IMAGE W OF THE N-BY-M MATRIX IDENTI-
FIED BY THE L.DZ-BY-M ARRAY Z UNDER THE N-SQUARE MATRIX A WITH-
OUT OVERWRITING 7. SUBROUTINE OP(N, 2, LDZ, W, M MUST INCLUDE
SPECIFICATION STATEMENTS EQUIVALENT TO: REAL Z(LDZ, M, W(N, M

300 Oy Ce (o T3 T T )

4
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LDX

1S AN ENTLZRNAL INPUT VARIABLE, THE NAME OF A FORTRAN COM-
PATIBLE SUBROUTINE SUBPROGRAM WHICH MAY BE USED FOR
OBTAINVING INFORMATION OR TO EXERT CONTROL DURING EXECUTION
DF SIMITZ. INF HAS THE FORM INF(KS, G, H, F) WHERE
KS I3 AN INTEGEH OUTPUT VARIABLE, THE NUMBER OF THE NEXT
ITERATICON STEP,
G IS AN INTEGER OUTPUT VARIABLE, THE NUMBER OF ALREADY
ACTZPTED EIGENVECTORS.
H IS AN INTEGER OUTPUT VARIABLE, THE NUMBER OF ALREADY
ACCEPTED EIGENVALUES.
F I3 A REAL OUTPUT VARIABLE P-ARRAY, ERROR QUANTITIES
MEASTRING RESPECTIVELY THE STATE OF CONVERGENCE OF
THE P SIMULTANEOUS ITERATION VECTORS. EACH ELEMENT OF
THE ARRAY F IS INITIALLY SET BY SIMITZ TC THE VALUE 4.0.
AS AN INTEGER [NPUT VARIABLE IS THE NUMBER CF EIGENVALUES
TC BE COMPUTED, O .LT. EM .LT. P .LE. N .LE. LDX.
AS AN INTEGER OUTPUT VARIABLE IS THE NUMBER OF EIGENVECTORS
COMPUTED THnOUGH KM ITERATION STEPS.
AS A REAL N-BY-P INPUT ARRAY IS A SET OF P OPTIONAL INITIAL
APPROXIMATE EIGENVECTORS X(I,1), ..., X(I,P), I =1, ...,
N, INTERFRETED BY SIMITZ IF KM IS NEGATIVE.
AS A REAL N-BY-P OUTPUT ARRAY IS A SET OF EM EIGENVECTORS
X(I.1ly, .... X{I,EM, I =1, .. N, COMPUTED THROUGH
ABS (KM) TTERATICN STEPS WITH THE REMAINDER OF X CONSISTING
OF P - EM APPECXIMATE EIGENVECTORS. THE P-SQUARE MATRIX
WHOSE (J, L) ENTRY IS IP(N, X(1,J), X(1,L)) IS THE IDEN-
TITY MATRIX; THAT IS, THE EIGENVECTORS OF A ARE ORTHO-
NORMAL KELATIVE TC THE INNER PRODUCT IP.
IS AN INTEGER INPUT VARIABLE, THE EXTENT IN THE LEADING
DIMENSION OF THE ARRAY X IN THE CALLING PROGRAM.
IS A REAL OUTPUT P-ARRAY OF WHICH D(1), ..., D(EM) ARE THE
EIGENVALTUES OF A LARGEST IN MAGNITUDE IM DECREASING ORDER
CORRESPONDING TO THE COMPUTED EIGENVECTORS X(I,1),
XK(ILEM), I = 1 ., N. D(EM+1), ..., D(P-1) CONTAIN
APPROXIMATIONS TO PROGRESSIVELY SMALLER SUCH EIGENVALUES.
D(p) CONTAINY THE MOST RECENTLY COMPUTED VALUE OF E, WHERE
THE INTERVAL (-E, E) IS THE INTERVAL OVER WHICH THE
CHEBYSHEV ACCELERATION WAS PERFORMED.
IS A REAL INPUT VARIABLE UNUSED BY SUBROUTINE SIMITZ. WK IS
INCLULDEL ONLY FOR COMPATIBILITY WITH PREVIOUS VERSIONS.
WORKING S'0ORAGE 185 ACCOMMODATED BY AUTOMATIC ARRAYS WITHIN
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SIMITZ.
OTHER PROGRAMMING INFORMATION

THIS VERSION CF SIMITZ IS DESIGNED TO OPERATE IN THE SOFTWARE
ENVIRONMENT FURNISHED BY THE SLATEC MATHEMATICAL SUBPROGRAM LIBRARY,
VERSION 3.1.

THE PERFORMANCE OF SIMITZ IS STRONGLY DEPENDENT UPON THE CHOICE
OF INFPUT PARAMFETERS AND UPON THE CAREFUL PREPARATION OF THE
SUBPROGRAMS IP AND OP. THE USER SHOULD CONSIDER USING HIS OWN
ACTIVE SUBROUTINE INF TO MONITOR PROGRESS OF SIMITZ RELATIVE TO
HIS CHOICE OF INPUT PARAMETERS IF NO INFORMATION IS OTHERWISE
AVAILABLE CONCERNING THE LOCATIONS OF THE RELEVANT EIGENVALUES.
RECALL THAT SIMITZ MAY BE REENTERED WITH KM .LT. O WITHOUT LOSS
OF INFORMATION TO PERMIT CONSERVATIVE INITIAL CHOICES OF
ABS(KM) , EPS AND P.

OTHER PROGRAMS REQUIRED

SUBROUTINE ORTHOG - SUBSIDIARY SUBPROGRAM
PERFORMS ORTHONORMALIZATION RELATIVE TO THE REAL INNER
PRODUCT IP BY TIE GRAM-SCHMIDT PROCESS OF THE TERMINAL
COLUMN VECTORS OF THE MATRIX X GIVEN THAT THE INITIAL
COLUMNS ARE IP ORTHONORMAL.
SUBROUTINE RANDOM - SUBSIDIARY SUBPROGRAM
INSERTS UNIFORMLY DISTRIBUTED RANDOM REAL VALUES FROM THE
INTERVAL (-1. 1) INTO COLUMN VECTORS OF THE MATRIX X.
SUBROUTINE TRED2
IS THE EISPACK (4) PROGRAM WHICH COMPUTES A HOUSEHOLDER
TRIDIAGONAL FORM OF A REAL SYMMETRIC MATRIX.
SUBROUTINE IMIQLZ2
IS THE EISPACK PROGRAM WHICH COMPUTES THE EIGENVALUES AND
ORTHONORMAL EIGENVECTORS OF A SYMMETRIC TRIDIAGONAL MATRIX.
SUBROUTINE XERRWV
PROCESSES AN ERROR (DIAGNOSTIC) MESSAGE.
FUNCTION R1MACH
RETURNS SINGLE PRECISION MACHINE DEPENDENT CONSTANTS.
FUNCTION IP
IS DESCRIBED ABOVE.
SUBROUTINE OP
IS DESCRIBED ABOVE.
SUBROUTINE INF
IS DESCRIBED ABOVE.

METHOD

SIMITZ REPRESENTS RESULTS OF EXTENSIVE MODIFICATIONS AND TESTS
OF SUBROUTINE SIMITZ (1), A FORTRAN 66 TRANSLATION OF THE
ALGOL 60 PROCEDURE RITZIT (3). THE BASIC RUTISHAUSER~REINSCH
ALGORITHM IS PRESERVED.

»##REFERENCES (1) PAUL J. NIKOLAI, ALGORITHM 538 - EIGENVECTORS AND

EIGENVALUES OF REAL GENERALIZED SYMMETRIC MATRICES BY
SIMULTANEOUS ITERATION, ACM TRANS. MATH. SOFTWARE 5
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(1979), 118-125.

c (2) BERESFORD N. PARLETT. THE SYMMETRIC EIGENVALUE

C PROBLEM, PRENTICE-HALL, ENGLEWOOD CLIFFS, 1980.

C (3) HETNZ RUTISHAUSER, SIMULTANEOUS ITERATION METHOD FOR
c SYMMETRIC MATRICES, NUMER. MATH. 16(1970), 205-223.

C «4) B.T. SMITH ET AL, MATRIX EIGENSYSTEM ROUTINES -

C EISPACK GUIDE, 2-~-ND ED.,LECTURE NOTES IN COMPUTER

C SCIENCE 6, SPRINGER-VERLAG, NEW YORK, 1976.
C#«x«ROUTINES CALLED IMIQLZ.ORTHOG,RIMACH, RANDOM, TREDZ2 , XERRWV
C»x«END PROLOGUE
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